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Abstract
In this paper, we study the numerical optimization of nearest-neighbor
concurrence of bipartite one- and two-dimensional lattices, as well as
non-bipartite two-dimensional lattices. These systems are described in
the framework of a tight-binding Hamiltonian while the optimization of
concurrence was performed using genetic algorithms. Our results show that
the concurrence of the optimized lattice structures is considerably higher than
that of non-optimized systems. In the case of one-dimensional chains, the
concurrence increases dramatically when the system begins to dimerize, i.e.,
it undergoes a structural phase transition (Peierls distortion). This result is
consistent with the idea that entanglement is maximal or shows a singularity
near quantum phase transitions. Moreover, the optimization of concurrence
in two-dimensional bipartite and non-bipartite lattices is achieved when the
structures break into smaller subsystems, which are arranged in geometrically
distinguishable configurations.

PACS numbers: 03.67.−a, 03.65.Ud, 73.43.Nq, 71.10.Fd

1. Introduction

Quantum entanglement is one of the most distinctive features in quantum mechanics, yet
its properties are still not fully understood. This quantum resource is considered a key
element of several quantum information and quantum computation proposals such as quantum
teleportation [1], superdense coding [2], certain kinds of quantum key distribution schemes
and quantum secret-sharing protocols [3, 4].

Recently, much research has been focused on a better understanding of quantum
correlations in multiparticle systems [5–8]. A characteristic property that sets apart quantum
correlations (or entanglement) from the classical ones is that entanglement cannot be freely
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shared among many objects. For the special case of three qubits A,B and C, this has been
shown by Coffman et al [9] using concurrence, a measure of entanglement taking values
between 0 and 1 [10]. Coffman et al showed that the sum of the squared concurrences
AB and BC cannot be greater than unity, meaning that the degree of entanglement between
A and B limits the entanglement between A and C. This property is called monogamy of
entanglement. For an infinite chain of qubits sharing uniform entanglement with their first
neighbors, Wootters [6] found an upper limit for concurrence of 1/

√
2 (this limit, however,

has not yet been proven for physical systems). Under certain conditions, Wootters reports a
maximum concurrence of Cmax = 0.434 467, a result which has also been confirmed in the
case of rings with N qubits when N → ∞ [5]. Dür et al [7] have shown that in the case of
three qubits, average concurrences between pairs of qubits of the |W 〉 state are all equal to
2/3, while Koashi et al [8] have reported a maximum average concurrence between all pairs
of qubits of 2/N when all qubits in the system except one are in state |0〉.

On the other hand, it has been conjectured by several authors that entanglement can
play an important role in quantum phase transitions (QPT) [11–17], which take place at
absolute zero temperature [18]. For example, Osborne et al [17] have stated that in QPT,
long-range correlations take place due to entanglement. In addition, Osterloh et al [11]
analyzed the behavior of entanglement near the critical point of the spin 1/2 model XY in
a transverse magnetic field and found that in the region close to a quantum phase transition
the derivatives of concurrence obey a scaling law. Thus, there exists an intimate connection
between entanglement, scaling and universality. Further, quantum entanglement has been
used not only near quantum phase transitions to characterize them, but also to obtain a better
description of experimental measurements of specific heat and magnetic susceptibility of
dilute solution of Ising dipoles [19]. Additionally, we have recently shown that, in the case of
rings with off-diagonal disorder, an increase in disorder strength results in the enhancement
of the nearest-neighbor (NN) concurrence with respect to the perfectly ordered ring [20]. This
enhancement of concurrence hints that quantum entanglement might be a good indicator of
anomalies in the wavefunctions and density of states in systems where no quantum phase
transitions take place.

In this paper, we report maximization of the concurrence using a computational
optimization method. The calculations were done on the basis of an electronic model
Hamiltonian which contains parameters depending on the lattice structure. Such parameters
were optimized in order to maximize the concurrence. This means that, in general, the
systems considered will not be translationally invariant after optimization, since the structure
can be dramatically changed in the process. We present, specifically, calculations on systems
described by a tight-binding model in one- and two-dimensional lattices. Our results can serve
as a basis for the design of structures which maximize nearest-neighbor entanglement.

This paper is organized in the following manner. In section 2, the Hamiltonian is presented,
as well as the most important formulae used to quantify concurrence and the key steps in the
optimization procedure. Results for one- and two-dimensional bipartite lattices as well as
non-bipartite two-dimensional lattices will be presented in section 3. Finally, a summary of
our results can be found in section 4.

2. Theory

We consider electronic systems described by a tight-binding Hamiltonian of the form

Ĥ =
∑

〈ij〉
tij ĉ

+
i ĉj . (1)
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For simplicity, we consider spinless electrons. In equation (1), ĉ+
i (ĉi ) is the usual creation

(annihilation) operator of a spinless electron at site i and tij is the hopping integral between
NN sites i and j . Note that due to the fact that the spinless fermion Hamiltonian commutes
with the number operator,

[
H, n̂ = ∑

i ĉ
+
i ĉi

] = 0, [20, 21] sectors with different number n
of spinless fermions can be diagonalized separately by taking advantage of this symmetry,
and a calculation considering the complete space Hilbert (2N) would give the same results.
In addition, it is known that the 1D tight-binding spinless fermion chain is related to the 1/2
spin XX Hamiltonian chain in such a way that the 1/2 spin XX Hamiltonian can be mapped
to a tight-binding spinless fermion or vice versa using the Jordan–Wigner transformation,
S+

i = c
†
i (−1)Q where Qi = ∑

i c
†
i ci and similarly for S−

i [18]. Using this transformation, we
obtain that Ŝz

i = ĉ
†
i ĉi − 1/2 = n̂i − 1/2 where Sz

i is the spin 1/2 local operator, whose two
eigenvalues are 1/2 and −1/2. In this way, we can observe the unoccupied or occupied states
of lattices sites of the 1D chain as the two spin states of spin 1/2 particles whose dynamics
are described by the XX Hamiltonian, which is given by the following expression

ĤXX =
N∑

j

Jj

(
S+

j+1S
−
j + S−

j S+
j+1

)
, (2)

where Jj is the coupling constant.
It should be noted that the magnitude of hopping elements tij can easily be related to the

lattice structure. A large tij indicates a small interatomic distance, which causes a large overlap
between the wavefunctions localized on sites i and j . Analogously, a small tij represents a
large interatomic distance. tij = 0 means that sites i and j are not nearest neighbors.

To calculate the entanglement of formation between pairs of sites, we employed the
concept of concurrence [10] and proceeded in a similar way as Zanardi and coworkers did for
the case of translationally invariant chains [21].

For a system described by the Hamiltonian of equation (1), the concurrence between sites
i and j has the form [5]

Cij = 2 max{0, |z| − √
vy}, (3)

where

v = 1 − 〈n̂i〉 − 〈n̂j 〉 + 〈n̂i n̂j 〉 (4)

y = 〈n̂i n̂j 〉 (5)

z = 〈
ĉ+
j ĉi

〉
. (6)

Note that i and j do not need to be nearest neighbors.
To maximize NN concurrence, we use genetic algorithms (GAs), an optimization

technique, where the characters or numbers representing the solution to a problem are stored
in a string called ‘chromosome’. Nature-inspired operators of crossover and mutation are
applied to a population of chromosomes and those individuals that represent the best solution
to the problem are given more probability of being chosen for the next generation. By iterating
this process, it is possible to obtain a very good solution without having to explore the entire
solution space.

For the particular problem treated in this paper, we propose first families of hopping
integrals {tij }, which are then fine-tuned by means of the genetic algorithm. Our goal is
to obtain the hopping elements from the Hamiltonian such that its ground-state function
represents the maximum average NN concurrence.

We have used genetic algorithms in a previous paper [22], where we have optimized the
total concurrence (Ctotal) of one-dimensional chains and two-dimensional lattices described

3
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by a tight-binding Hamiltonian with open and periodic boundary conditions. Ctotal was taken
as an average over all concurrences between every site i with the N − 1 remaining sites.

In this paper, however, we focus only on the optimization of first-neighbor concurrence,
which can be calculated by means of the following expression:

CNN = 1

wN

N∑

i=1

z∑

j=1

Cij . (7)

where w is the number of nearest neighbors. CNN is our fitness function for the application of
the genetic algorithm.

It is important to point out that a system with translational invariance is described by
all the tij elements from equation (1) having the same value, for example, tij = −1. This
configuration leads to concurrence values that are the same for each pair of nearest neighbors,
a case which has been previously studied by several authors [5, 21, 20].

The genetic pseudo-algorithm employed in this work consists in the following steps:

(i) We consider each tij of the Hamiltonian matrix as a gene and the array of these genes as
a chromosome.

(ii) Allocate two arrays, ‘generation0’ and ‘generation1’ composed of chromosomes.

(iii) Allocate a chromosome ‘best’ with fitness 0.0.

(iv) For each band filling x = n/N (with n being the number of electrons in the system and
N being the total number of lattice sites), we repeat the following steps:

• Initialize ‘generation0’ with random values in the range (−5, 0).

• For a given number of generations repeat:
– Decode each chromosome in ‘generation0’ into a Hamiltonian matrix,

diagonalize it and calculate the average concurrence between only nearest
neighbors of the system using equation (7). In other words, we calculate the
fitness CNN for each individual in ‘generation0’.

– Compare ‘best’ with the fittest individual in ‘generation0’ and substitute ‘best’
if the latter has larger fitness.

– Choose chromosomes with a probability proportional to its fitness (selection
operator) and copy it to ‘generation1’.

– Use crossover and mutation operators on chromosomes in ‘generation1’ to create
new chromosomes.

– Make ‘generation0’ equal to ‘generation1’.

• Print ‘best’ in an output file.

3. Results and discussion

In this section, we present our results of NN concurrence optimization using GAs. The effect
of bipartite and non-bipartite systems with periodic boundary conditions is addressed. We
recall that a lattice is considered bipartite if it can be separated into two sublattices A and B
such that all first neighbors of the sites of sublattice A are sites from sublattice B and vice
versa. Biparticity or non-biparticity has important consequences in the physical properties of
a lattice. For example, the concurrence of a bipartite lattice is symmetric around half band
filling while non-biparticity is responsible for magnetic frustration in spin systems, that is, the
impossibility of minimizing energy for each pair of spins in the lattice.
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Figure 1. Nearest-neighbor concurrence CNN of chains with periodic boundary conditions as a
function of band filling x = n/N .

3.1. Bipartite systems

First, we focus on finite one-dimensional chains of up to N = 50 sites with periodic boundary
conditions. Results are shown in figure 1. We considered 500 chromosomes (i.e., a collection
of hopping integrals from the Hamiltonian matrix) in each population, with starting values
randomly chosen in the range (−5, 0). The algorithm was left to evolve 4000 generations
in order to obtain the individuals with the best fitness value. This procedure was undertaken
for each band filling (x = n/N). From the figure, it can be seen that there exists symmetry
around half band filling, indicating that it is possible to focus only on the 0 � x � 0.5 region
when analyzing concurrence in bipartite lattices.

Optimized concurrence shows two distinctive features: (a) the growth of concurrence as a
function of band filling is quasi-linear for x � 0.25. This result is due to the fact that in lower
band fillings, the probability of electronic collision is low, and the system is able to optimize
concurrence without considering Pauli repulsion. (b) For x > 0.25, the growth of CNN as a
function of x is quasi-parabolic, and electronic exchange due to the Pauli principle comes into
play. Comparison between results obtained using GAs and the ordered case—with all tij taken
equal—shows that for low band filling (x � 0.1), both concurrence curves display a similar
behavior and the impact of optimization starts to be noticeable for x > 0.1, with a maximum
increase in concurrence with respect to the ordered case of 47% (0.5 versus 0.3392) at half
band filling.

In order to understand the behavior of optimized concurrence, we have analyzed those
chromosomes with best fitness values for each x. Results show that, as band filling x is
increased, the ring starts to break into smaller chains (i.e., some hopping elements become
very small). For example, while for n = 1 all tij are similar and close to −4, in the next filling,
n = 2, two noncontiguous elements tij differ from the rest and are now close to 0, suggesting a
separation into two subchains. This division increases with x until half band filling (x = 0.5),
a point at which the system alternates a short bond with a long one as shown in figure 2.
In other words, to increase the average concurrence, the system begins to dimerize, i.e, the
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Figure 2. Graphical representation of a one-dimensional ring with 32 sites in the lattice structure
yielding the maximal nearest-neighbor concurrence (see the text). Parameters: 5000 generations;
population = 600. Half band filling. Three cases are distinguished by color: light gray (|tij | < 1),
gray (1 � |tij | < 3) and black (3 � |tij | < 5).

1 10 100

t
i,i+1

/t
i+1,i+2

0.3

0.35

0.4

0.45

0.5

C
N

N

t
i,i+1

=1.0

Figure 3. Nearest-neighbor concurrence CNN of a tight-binding dimerized chain as a function of
its dimerization parameter ti,i+1/ti+1,i+2 with ti,i+1 = 1.0.

chain undergoes a structural phase transition due to a Peierls instability [23–25]. This is a
metal-insulator transition occurring in one-dimensional metals, where the doubling of the unit
cell leads to a decrease in the kinetic energy of the system. Note that dimerization of the chain
was obtained in a natural manner, since all initial matrix elements were initialized by random
values. Rigorously speaking, the maximum of the concurrence at half band filling occurs when
the system is completely dimerized, in which case the system would be comprised of singlets.
However, this limiting case is not interesting since a complete dimerized chain consists of
isolated dimers and therefore the high entanglement cannot be exploited. But our most relevant
result is that it is not necessary to reach the ‘fully dimerized’ case in order to achieve high
entanglement, as we demonstrate in figure 3 where we show that the NN concurrence almost
saturates to the maximal value when the ratio between successive hopping elements becomes
equal to 10, which means that the system is far from being fully dimerized but exhibits almost
the maximal entanglement. Similar results can be obtained for other structures in 2D. The
maximal entanglement is reached asymptotically as a function of the ratio between the hopping
elements, which means that there are, strictly speaking, an infinite number of structures which
are not fully dimerized and exhibit almost maximal entanglement. This dimerization shows a
possible connection between the increase in concurrence and the Peierls instability. In order to
study this connection, we analyzed the concurrence and their derivatives for a dimerized chain.
In this case, we consider that the nearest-neighbor hopping integrals tij of equation (1) take the
values t2n,2n+1 = 1 + α and t2n−1,2n = 1 − α, where α ∈ [0, 1] is the dimerization parameter.
This one-particle dimerized Hamiltonian can be diagonalized by using the transformations
proposed by Su, Schrieffer and Heeger [24]. The goal of analyzing the concurrence and its
derivative is based on the fact that a discontinuity (singularity) in the (derivative) ground-
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Figure 4. (a) Nearest-neighbor ground-state concurrences Ci,i+1 of the dimerized chain (b) and
their derivatives as a function of the dimerization parameter α.

state concurrence has been associated with a first (second) order QPT [11–15]. However,
it has been shown that the relation between QPT and non-analyticity in the concurrence is
not one-to-one [13]. A one-to-one connection can be assumed though, when we consider
QPTs characterized by non-analytic behavior in the derivatives of the ground-sate energy
and we exclude artificial and accidental occurrences of non-analyticities in the ground-state
concurrence and its derivative [14]. In figure 4, we present the ground-state concurrence of
a dimerized chain, C2n,2n+1 and C2n−1,2n, and its derivative, C′

2n,2n+1 and C′
2n−1,2n, where C’

means dC/dα, as a function of α. Note that C2n,2n+1 = 2.0∗max
{
0, γ2n,2n+1 +γ 2

2n,2n+1 −0.25
}

and C2n−1,2n = 2.0 ∗ max
{
0, γ2n−1,2n + γ 2

2n−1,2n − 0.25
}

[20], where γ2n,2n+1 = 〈
c
†
2nc2n+1

〉
and

γ2n−1,2n = 〈
c
†
2n−1c2n

〉
are the one-particle density-matrix elements or bond orders between NN

and can be calculated analytically [24]. These bond orders are continuous functions of α, the
first one ranging from γ2n,2n+1 = 0.318 310 (α = 0) to 0.5 (α = 1.0) and the second one from
γ2n−1,2n = 0.318 310 (α = 0) to 0.0. (α = 1.0). Therefore, the discontinuity obtained for
C2n−1,2n at α ≈ 0.138 is not related to a critical point. Clearly, this discontinuity is artificial
and comes from the particular definition of the concurrence in equation (3) [13, 14].

In figure 4, one observes that C′
2n,2n+1 and C′

2n−1,2n present singularities at the limit
α → αc = 0, where the Peierls instability occurs, which should be related with a
second-order QPT [14]. In order to investigate if the singularity is related with a second-
order QPT, we write the ground-state energy (and their derivatives) as a function of the
NN density-matrix elements (and their derivatives). The ground-state energy per site is
given by Egs = −(1 + α)γ2n,2n+1 − (1 − α)γ2n−1,2n, its first derivative by dEgs/dα =
−(1 + α)dγ2n,2n+1/dα − (1 −α)dγ2n−1,2n/dα − γ2n,2n+1 + γ2n−1,2n and its second derivative by
d2Egs/d2α = −(1+α)d2γ2n,2n+1/d2α−(1−α)d2γ2n−1,2n/d2α−2dγ2n,2n+1/dα+2dγ2n−1,2n/dα.
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Figure 5. Nearest-neighbor concurrence CNN of a 6 × 6 square lattice as a function of band filling
x. The solid line refers to the optimized system. The dashed line shows the concurrence of a large
perfectly periodic square lattice (N = 1600).

These second derivatives presents a singularity at αc, which is a manifestation of a second-order
QPT.

It is noteworthy that these results are in stark contrast with those obtained in a previous
work [22], where concurrence is maximum for lower band fillings. This is related to the fact
that entanglement cannot be unlimitedly shared as the number of qubits in the system increases
[7, 8], which is the case in [22] where entanglement between any pair of qubits in the system
(i.e., between every site i with the N − 1 remaining sites) was maximized.

The effect of dimensionality over CNN is shown in figure 5, where calculations for a
square lattice 6 × 6 using a population of 700 individuals were performed. We considered
10 000 generations for each band filling. From the figure, it is possible to observe again two
clearly remarkable traits for two ranges of x, as in the one-dimensional case: a low-band
filling range (x � 0.25) where the increase of CNN as function of x is quasi-linear due to
low collision probability between particles, and a second range x > 0.25 where the Pauli
exclusion principle starts to play an important role. CNN as a function of x has a quasi-
parabolic behavior in the latter range, decreasing first in the range 0.25 < x � 0.375 and then
increasing for 0.375 < x � 0.5. It is also noteworthy that both regions have the same maxima
of CNN ≈ 0.25, one at x = 0.25 and the other at x = 0.5. Comparison of CNN between the
optimized case and an ordered, large lattice shows that the greatest difference occurs at half
band filling. Moreover, we observe that the maximum CNN obtained for the square lattice is
smaller than the maximum CNN for the 1D ring.

A study of the fittest chromosomes for those band fillings where CNN is a maximum
shows the following behavior: for x = 0.25, the short bonds form nine squares which are
separated by long bonds (figure 6(a)). In each square, a spinless electron can be found. This
result is related to the definition of generalized |WN 〉 states, |WN 〉 = (1/

√
N)|N −1, 1〉 where

state |N − 1, 1〉 denotes the totally symmetric state with N − 1 zeros and one 1. It has been
shown that these |WN 〉 states are very robust against particle losses and that the concurrence
of two qubits can be determined to be Cij = 2/N [7]. In the case of N = 4, we have that
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(a)Band filling =

25%

(b)Band filling =

50%

Figure 6. Graphical representation of the optimized structures obtained starting from a square
lattice of 36 (6 × 6) sites at (a) a quarter band filling and (b) half band filling. Parameters: 10000
generations; population = 700. Three cases are distinguished by color: light gray (|tij | < 1), gray
(1 � |tij | < 3) and black (3 � |tij | < 5).

|W4〉 = (1/
√

4)[|0 0 0 1〉 + |0 0 1 0〉 + |0 1 0 0〉 + |1 0 0 0〉]. On the other hand, for x = 0.5
the system tries once again to form dimerized states, separated with long bonds (figure 6(b)).
Note, again, that these are the limiting cases. As in the case of 1D structures, the maximal
entanglement is reached asymptotically. Although the fully decoupled systems achieve the
maximal entanglement, the intermediate structures are those of more interest. The decrease
of CNN with respect to the one-dimensional ring is related to the difference in the number
of neighbors between both systems. In the one-dimensional systems, CNN is obtained by
averaging between two nearest neighbors whereas in the square lattice this average requires
four nearest neighbors.

3.2. Non-bipartite systems

In order to study the effect of non-biparticity, on the concurrence, we have considered three
non-bipartite lattices: the Kagomé lattice, the maple leaf or Betts lattice and the triangular
lattice. Note that the triangular lattice is less bipartite than the two other ones due to its larger
number of triangular bonds. This has important consequences in antiferromagnetic systems
[26].

The basic common feature of the results presented so far is that successful individuals in
the linear chain and square lattices form open and tightly closed binary subsystems. Thus,
we exploited this fact in order to speed up the procedure and increase the accuracy of the GA
calculations. Although we have already seen that a dimerization of 1/10 is enough to obtain
near-maximal concurrence, we chose to initialize hundred individuals to 0.0 as a limiting case,
as well as a hundred to −5.0. The motivation for performing this step is that these short and
long bonds will spread to other individuals through the crossover operator, and that these kind
of bonds will help increase the concurrence.

We now apply our calculations to a periodic Kagomé lattice of 48 sites with periodic
boundary conditions. Results are shown in figure 7. We considered 1200 individuals in the
population, which was left to evolve over 3000 generations. Quasi-linear behavior of CNN

with x can be seen in regions with low electronic or hole density, namely x � 0.2 and x � 0.8.
This behavior corresponds to low probability of collision, as has already been discussed, and
is independent from the kind of lattice or whether it presents triangular bonds or not. The
first effect of non-biparticity is reflected in the lack of symmetry of CNN around half band
filling. Note that figure 7 presents only one distinguishable maximum located—contrary to the
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Figure 7. Nearest-neighbor concurrence CNN of a small periodic Kagomé lattice as a function
of band filling x. In addition, nearest-neighbor concurrence CNN for the Kagomé lattice was
calculated using the proposed optimal structure of figure 8(b).

(a) Best individual for
Kagomé lattice

(b) Proposed optimal
structure

Figure 8. Graphical representation of a Kagomé lattice of 48 sites. (a) represents the best
individual using genetic algorithms at x = 33%. (b) depicts a proposed optimal structure based
on (a).

case of bipartite lattices—out of half band filling, at x � 1/3. Comparison with respect to the
ordered case shows the relevance of the optimization technique, particularly for 0.6 � x � 0.8,
where the initially ordered structure displays a very low concurrence. Moreover, there is a
coincidence in the localization of the maximum for both the optimized and ordered lattices.
The best individual corresponding to the maximum of the numerical optimization approach
can be seen in figure 8(a), where one can observe that a geometrical configuration favoring
triangular loops has been formed. It is clear again that this trend to form triangular loops is
related to W states, |W 〉 = (1/

√
3)[|1 0 0〉 + |0 1 0〉 + |0 0 1〉]. To further extend the optimized

results, we now introduce a design as seen in figure 8(b). A new concurrence curve for the
Kagomé lattice is presented in figure 7. In this case, besides the hundred individuals initialized
to 0.0 and −5.0 each, all other individuals were initialized with the proposed design of
figure 8(b). As can be seen, the concurrence is not only increased at the maximum, but the
proposal improved the overall behavior of the curve as well.
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(a)Best individual for Betts lattice (b)Proposed optimal structure

Figure 9. Graphical representation of a Betts lattice of 48 sites. (a) represents the best individual
using genetic algorithms at x = 33%. (b) depicts a proposed optimal structure based on (a).
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N = 54; gen. = 3,000; pop. = 1,200

Figure 10. Nearest-neighbor concurrence CNN for the Betts lattice as a function of x. The figure
shows CNN for the ordered case, the optimized case using genetic algorithms and, finally, the case
where the generations were initialized at each band filling using the proposed optimal structure of
figure 9(b).

Considering the hint given by the analysis of the Kagomé lattice, we ran the optimization
algorithm for the maple-leaf or Betts lattice in order to find an optimum structure design.
Figure 9 shows the best individual of an initial run of the algorithm corresponding to
the maximum at x = 0.33 (figure 9(a)), as well as a proposal based on this individual
(figure 9(b)). Figure 10 shows the results for the ordered case, as well as both runs of
the algorithm. As expected, the ordered case performed worse than any of the optimized
cases. Once again, the run based on proposal shown in figure 9(b) performed better than the
random-based case.

Finally, in the case of the triangular lattice, the typical behavior found in the other non-
bipartite lattices can be readily observed: a single maximum located near x = 1/3 and a much
better performance with respect with the ordered case (see figure 11). As in the other cases, we
then proceeded to develop new proposed configurations by looking at successful individuals
and being inspired by W states. Two new designs were chosen, seen in figures 12(a) and (b).
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Figure 11. Nearest-neighbor concurrence CNN for the triangular lattice as a function of x. The
nearest-neighbor concurrence CNN was calculated for the ordered case, the optimized case using
genetic algorithms, the proposed optimal structures and the case combining results from proposals.

(a)Proposed optimal
structure “Triangle”

(b)Proposed optimal
structure “Diamond”

Figure 12. Proposed optimal structures based on the best individual obtained using genetic
algorithms. The triangle structure is based on the best individual at x = 33% whereas the diamond
is inspired on the best individual at x = 0.69.

The best curve for CNN can be seen in figure 11, where each point was chosen as the
configuration with greater CNN between the different set-ups for each band filling. For the
most part, it is basically a combination of the curves obtained when initializing with each
proposal. Although there is a fair increase in the overall maximum (CNN = 0.2222), it is still
lower than that of the Kagomé lattice (CNN = 0.3333) and maple leaf lattice (CNN = 0.2666).
This is because in the triangular lattice there are more bonds, and consequently each site must
share its entanglement with more neighbors.

4. Summary and conclusions

In this work, we have used GAs to maximize the nearest-neighbor average concurrence of
systems by tuning the nearest-neighbor hopping integrals of a tight-binding Hamiltonian.
The optimization of entanglement has been performed for one- and two-dimensional bipartite
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systems as well as for two-dimensional non-bipartite systems. The results show that the
concurrence of the optimized systems is very large in comparison with the ordered structures.
This increase in the concurrence is understood and interpreted by analyzing the optimized
nearest-neighbor hopping integrals. In general, we found certain tendencies of periodical
systems to break into smaller subsystems. This is achieved in a natural manner by the system
by making the hopping integrals evolve in such a way that the absolute value of some integrals
is high in some cases (|tij | � 5) and very small in others (|tij | � 1).

These results are related to the fact that quantum entanglement, in contrast with classical
correlations, cannot be freely shared between many objects. This quantum correlations
property—monogamy—is clearly noticeable in the case of the periodic ring at x = 0.5, where
the nth site can be completely entangled with site n+1 (Cn,n+1 � 1) while on the other hand it is
almost unentangled with site n−1 (Cn,n−1 � 0.1). However, it is not necessary for the system
to undergo a complete decoupling into isolated subsystems to have a large enhancement of the
entanglement with respect to the undistorted chain. A slight structural distortion brings already
a considerable increase of the NN concurrence, which continues growing and almost saturates
when the ratio between the hopping integrals is about 10. Moreover, results at x = 0.5 show
that, in order to maximize concurrence, the system undergoes a structural transition, the Peierls
distortion.

Finally, it is worth mentioning that our results for the 1D tight-binding systems can be
used to describe the maximization of the CNN concurrence for systems modeled by the XX

chain of 1/2 spin.
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